На какое число делится 793. Основные признаки делимости


Продолжим знакомство с признаками делимости . Сейчас мы изучим признак делимости на 6 . Сначала приведем его формулировку. Дальше рассмотрим примеры применения признака делимости на 6 . После этого докажем признак делимости на 6 . В заключение остановимся на примерах, в которых доказывается делимость на 6 значений некоторых выражений.

Навигация по странице.

Признак делимости на 6, примеры

Формулировка признака делимости на 6 объединяет в себе признак делимости на 2 и признак делимости на 3 . Она такова: если запись целого числа оканчивается одной из цифр 0 , 2 , 4 , 6 или 8 , а также сумма цифр в записи числа делится на 3 , то такое число делится на 6 ; если же нарушено хотя бы одно из указанных условий, то число не делится на 6 . Другими словами, целое число делится на 6 тогда и только тогда, когда это число делится на 2 и на 3 .

Итак, признак делимости на 6 применяется в два этапа:

  • На первом этапе проверяется делимость числа на 2 . Для этого рассматривается последняя цифра в записи числа. Если запись числа оканчивается цифрой 2 , то это число делится на 2 , и для дальнейшей проверки его делимости на 6 переходим ко второму этапу. Если же последняя цифра в записи числа отлична от 0 , 2 , 4 , 6 или 8 , то число не делится на 2 , следовательно, не делится и на 6 .
  • На втором этапе проверяется делимость числа на 3 . Для этого вычисляется сумма цифр исходного числа и проверяется, делится ли она на 3 (например, при помощи признака делимости на 3 ). Если сумма цифр делится на 3 , то число делится на 3 , и, учитывая его делимость на 2 (установленную на предыдущем этапе), можно делать вывод о делимости числа на 6 . Если же сумма цифр исходного числа не делится на 3 , то это число не делится на 3 , следовательно, не делится и на 6 .

Теперь можно рассмотреть конкретные примеры применения признака делимости на 6 .

Пример.

Делится ли число 8 813 на 6 ?

Решение.

Для ответа на поставленный вопрос воспользуемся признаком делимости на 6 . Так как запись числа 8 813 оканчивается цифрой 3 , то можно делать вывод, что число 8 813 на 6 не делится.

Ответ:

Нет.

Пример.

Возможно ли разделить 934 на 6 без остатка?

Решение.

Число 934 оканчивается цифрой 4 , поэтому первое условие признака делимости на 6 выполняется. Проверим, делится ли сумма цифр числа 934 на 3 . Имеем 9+3+4=16 , а 16 на 3 не делится. Следовательно, второе условие признака делимости на 6 не выполняется, поэтому исходное число на 6 не делится.

Ответ:

Нет.

Пример.

Делится ли число −7 269 708 на 6 ?

Решение.

Последней цифрой в записи данного числа является 8 , значит первое условие признака делимости на 6 выполнено. Теперь находим сумму цифр числа −7 269 708 , имеем 7+2+6+9+7+0+8=39 . Так как 39 делится на 3 (39:3=13 ), то можно делать вывод о делимости исходного числа на 6 .

Ответ:

Да, делится.

В заключение этого пункта отметим, что для проверки делимости заданного числа на 6 можно выполнить деление непосредственно, а не прибегать к признаку делимости на 6 .

Доказательство признака делимости на 6

Приведем доказательство признака делимости на 6 . Для удобства используем формулировку этого признака в форме необходимого и достаточного условия.

Теорема.

Для делимости целого числа a на 6 необходимо и достаточно, чтобы число a делилось на 2 и на 3 .

Доказательство.

Сначала докажем необходимость, то есть докажем, что если целое число a делится на 6 , то оно делится на 2 и на 3 .

Для этого нам понадобится следующее свойство делимости : если целое число a делится на b , то произведение m·a , где m – любое целое число, тоже делится на b .

Так как a делится на 6 , то понятие делимости позволяет нам записать равенство a=6·q , где q – некоторое целое число. В записанном произведении множитель 6 делится и на 2 и на 3 , тогда из указанного выше свойства делимости следует, что произведение 6·q делится и на 2 и на 3 . Этим доказана необходимость.

Чтобы признак делимости на 6 оказался полностью доказанным, осталось доказать достаточность. Докажем, что если целое число a делится на 2 и на 3 , то оно делится на 6 .

Здесь нам потребуется теорема из статьи основная теорема арифметики . Вот ее формулировка: если произведение нескольких целых положительных и отличных от единицы множителей делится на простое число p , то хотя бы один множитель делится на p .

Так как целое число a делится на 2 , то существует такое целое число q , что a=2·q . Но целое число a=2·q делится и на 3 , откуда 2·q должно делиться на 3 . Так как 2 на 3 не делится, то в силу указанной выше теоремы на 3 должно делиться q . Тогда существует такое целое число q 1 , что q=3·q 1 . Следовательно, a=2·q=2·3·q 1 =6·q 1 . Из полученного равенства следует делимость числа a на 6 . Этим доказана достаточность.

Другие случаи делимости на 6

В этом пункте мы остановимся на способах доказательства делимости на 6 значения заданного при указанном значении переменной. В этих случаях (когда целое число задано не в явном виде) непосредственное деление и применение признака делимости на 6 часто невозможно, поэтому нужен другой подход к решению.

Один из подходов основан на утверждении: если один из целых множителей в произведении делится на заданное число, то и все произведение делится на это число. То есть, если заданное выражение представить в виде произведения, в котором один из множителей будет делиться на 6 , то этим будет доказана делимость на 6 исходного выражения. Осталось обговорить способы представления в виде произведения.

Иногда представить заданное выражение в виде нужного произведения позволяет . Рассмотрим пример.

Пример.

Делится ли на 6 значение выражения при некотором натуральном n .

Решение.

Число 7 равно сумме 6+1 , поэтому . Теперь применим формулу бинома Ньютона, после чего проведем необходимые преобразования:

Так мы пришли к произведению, которое делится на 6 , так как оно содержит множитель 6 , а значение выражения в скобках является натуральным числом при любом натуральном n (так как сумма и произведение натуральных чисел есть натуральное число). Следовательно, значение исходного выражения при любом натуральном n делится на 6 .

Ответ:

Да.

Если выражение задано в виде многочлена, то иногда получить произведение с множителем, делящимся на 6 , позволяет . После чего переменной n в полученном разложении придаются значения n=6·m , n=6·m+1 , n=6·m+2 , …, n=6·m+5 , где m – целое число. Если будет показана делимость при каждом таком n , то этим будет доказана делимость исходного выражения на 6 при любом целом n .

Пример.

Докажите, что при любом целом n значение выражения делится на 6 .

Решение.

Разложение на множители данного выражения имеет вид .

При n=6·m имеем . В полученном произведении содержится множитель 6 , поэтому оно делится на 6 при любом целом m .

При n=6·m+1 имеем

Полученное произведение также делится на 6 .

При n=6·m+2 получаем

Очевидно, полученное выражение делится на 6 .

Аналогично при n=6·m+3 , n=6·m+4 и n=6·m+5 мы придем к выражениям, которые делятся на 6 при любом целом m .

Следовательно, значение исходного выражения делится на 6 при любом целом n .

Другим подходом к доказательству делимости на 6 выступает . Рассмотрим его применение на примере. Возьмем условие из первого примера, разобранного в начале этого пункта.

Пример.

Докажите, что при любом натуральном n значение выражения делится на 6 .

Решение.

Доказательство проведем методом математической индукции. Выполним все необходимые шаги этого метода.

Проверим, что при n=1 значение выражения делится на 6 . Имеем , а 6 делится на 6 .

Предположим, что при n=k значение исходного выражения делится на 6 , то есть, будем считать, что делится на 6 .

Осталось доказать, что при n=k+1 значение выражения делится на 6 . Докажем, что делится на 6 , учитывая, что делится на 6 . Для этого проведем следующие преобразования:

Первое слагаемое в полученной сумме делится на 6 , так как делится на 6 . Второе слагаемое в полученной сумме тоже делится на 6 , так как содержит множитель 6 . Следовательно, вся сумма делится на 6 .

Так методом математической индукции доказано, что значение выражения делится на 6 при любом натуральном n .

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.

Данный материал посвящен такому понятию, как признак делимости на 2 . В первом пункте мы сформулируем его и приведем примеры – задачи, в которым нужно выяснить, делится ли конкретное число на 2 . Затем мы докажем этот признак и поясним, какие еще существуют методы определения делимости на два чисел, заданных в виде значения выражений.

Формулировка и примеры признака делимости на 2

Чтобы лучше понять, что такое признаки делимости, нужно повторить тему, связанную с делимостью целых чисел. Определение основного понятия выглядит так:

Определение 1

Целое число, которое заканчивается цифрами 8 , 6 , 4 , 2 и 0 , может быть разделено на 2 без остатка. Если в конце числа стоит цифра 9 , 7 , 5 , 3 или 1 , то такое число делимостью на 2 не обладает.

С помощью данного признака можно выявить делимость не только целого положительного (натурального), но и целого отрицательного числа, поскольку они тоже могут быть разделены на 2 без остатка.

Приведем несколько примеров использования признака в задачах.

Пример 1

Условие: определите, какие из чисел 8 , − 946 , 53 , 10 900 , − 988 123 761 можно разделить на два.

Решение

Разумеется, мы можем просто разделить все эти числа на два в столбик и проверить, будет ли в конце остаток или нет. Но зная признак делимости на два, можно решить эту задачу гораздо быстрее.

Три числа из перечисленных, а именно 8 , - 946 и 10 900 , имеют в конце цифры 8 , 6 и 0 , значит, их деление на 2 возможно.

Остальные числа (53 и − 988 123 761) заканчиваются на 3 и 1 , значит, нацело на два они не делятся.

Ответ: на два можно разделить 8 , − 946 и 10 900 , а все прочие заданные числа нельзя.

Этот признак широко используется в задачах, где нужно раскладывать число на простые множители. Решим один такой пример.

Пример 2

Условие: выполните разложение 352 на простые множители.

Решение

Поскольку последняя цифра в исходном числе – 2 , то согласно признаку делимости, мы можем разделить его на два без остатка. Сделаем это: 352: 2 = 176 , а 352 = 2 · 176 . Полученное число 176 тоже делится на два: 176: 2 = 88 , а 176 = 2 · 88 . Это число тоже можно разделить: 88: 2 = 44 , 88 = 2 · 44 и 352 = 2 · 2 · 88 = 2 · 2 · 2 · 44 . Продолжаем разложение: 44: 2 = 22 и 44 = 2 · 22 , следовательно, 352 = 2 · 2 · 2 · 44 = 2 · 2 · 2 · 2 · 22 ; потом 22: 2 = 11 , откуда 22 = 2 · 11 и 352 = 2 · 2 · 2 · 2 · 22 = 2 · 2 · 2 · 2 · 2 · 11 . Наконец мы дошли до числа, которое на 2 не делится. Таблица простых чисел говорит нам, что это число является простым, значит, на этом разложение на множители заканчивается.

Ответ: 352 = 2 · 2 · 2 · 2 · 2 · 11 .

Деление чисел на четные и нечетные основано как раз на том, делятся ли они на 2 или нет. Зная этот признак делимости, можно сказать, что все четные числа имеют в конце цифру 0 , 2 , 4 , 6 или 8 , а все нечетные – 1 , 3 , 5 , 7 или 9 .

Как можно доказать признак делимости на 2

Перед тем, как перейти непосредственно к доказательству этого признака, нам надо доказать дополнительное утверждение. Оно формулируется так:

Определение 2

Все натуральные числа, которые заканчиваются на нуль, могут быть разделены на два без остатка.

Пользуясь правилом умножения натурального числа на 10 , мы можем представить некое число a как a = a 1 · 10 . Число a 1 , в свою очередь, получится из a , если убрать у него последнюю цифру.

Приведем примеры такого действия: 470 = 47 · 10 , где a = 470 и a 1 = 47 ; или же 38 010 · 10 , здесь a = 380 100 и a 1 = 38 010 . Второй множитель в этом произведении (10) может быть разделен на 2 , значит, все произведение может быть разделено на 2 . Это утверждение основано на соответствующем свойстве делимости.

Переходим к доказательству признака делимости на 2 . Чтобы было удобнее, представим его как теорему, т.е. как необходимое и достаточное условие делимости целого числа на два.

Теорема 1

Для деления целого числа a на два необходимым и достаточным условием является наличие последней цифры 0 , 2 , 4 , 6 или 8 .

Доказательство 1

Как доказать это утверждение? Для начала представим исходное число a в виде суммы десятков и единиц, т.е. запишем его как a = a 1 · 10 + a 0 . Здесь a 1 будет числом, получившимся из a при устранении последней цифры, а a 0 соответствует последней цифре данного числа (примерами такого представления также могут быть выражения 49 = 4 · 10 + 9 , 28 378 = 2 837 · 10 + 8). Произведение a 1 · 10 , взятое из равенства a = a 1 · 10 + a 0 , всегда будет делиться на два, что и показано с помощью этой теоремы.

Остальная часть доказательства основана на определенном свойстве делимости, а именно: если у нас есть три числа, образующие равенство t = u + v , и два из них делятся на целое число z , то и третье число также можно разделить на z .

Если a можно разделить на два, то согласно этому свойству, а также представлению a = a 1 · 10 + a 0 , число a 0 будет делиться на два, а такое возможно, только если a 0 = 0 , 2 , 4 , 6 или 8 .

А если a на 2 не делится, то исходя из того же самого свойства, число a 0 на 2 тоже делиться не будет, что возможно только при a 0 = 1 , 3 , 5 , 7 или 9 . Это и есть нужное нам доказательство необходимости.

Теперь разберем обратную ситуацию. Если у нас есть число a , последней цифрой которого является число 0 , 2 , 4 , 6 или 8 , то a 0 делится на 2 . Указанное свойство делимости и представление a = a 1 · 10 + a 0 позволяют нам заключить, что a делится на 2 . Если a имеет последнюю цифру 1 , 3 , 5 , 7 или 9 , то то a 0 не делится на 2 , значит, a тоже не делится на 2 , иначе само представление a = a 1 · 10 + a 0 делилось бы на 2 , что невозможно. Достаточность условия доказана.

В конце отметим, что числа с последней цифрой 1 , 3 , 5 , 7 или 9 при делении на два всегда дают в остатке единицу.

Возьмем случай, когда заданное число кончается одной из этих цифр. Тогда мы можем представить a как a = b + 1 , при этом число b будет иметь в качестве последней цифры 0 , 2 , 4 , 6 или 8 . В силу признака делимости на 2 число b можно разделить на 2 , значит, по определению делимости оно также может быть представлено в виде b = 2 · q , где q будет некоторым целым числом. Мы получили, что a = 2 · q + 1 . Данное представление показывает нам, что при делении числа a на 2 получается неполное частное q и остаток 1 (если нужно, перечитайте статью о делении целых чисел с остатком).

Прочие случаи определения делимости на 2

В этом пункте мы разберем те случаи, когда число, делимость которого на 2 нужно определить, не задано непосредственно, а определяется некоторым значением буквенного выражения. Здесь воспользоваться признаком, приведенным выше, мы не можем, и непосредственно разделить это выражение на 2 тоже невозможно. Значит, нужно найти какое-то другое решение.

Существует подход к решению таких задач, который основан на следующем свойстве делимости: произведение целых чисел можно разделить на некое число тогда, когда на него делится хотя бы один из множителей. Следовательно, если мы сможем преобразовать буквенное выражение в произведение отдельных множителей, один из которых делится на два, то тогда возможно будет доказать делимость на 2 и исходного выражения.

Чтобы преобразовать заданное выражение, мы можем воспользоваться формулой бинома Ньютона. Посмотрим такую задачу.

Пример 3

Условие: определите, можно ли разделить на 2 значение выражения 3 n + 4 n - 1 для некоторого натурального n .

Решение

Сначала запишем очевидное равенство 3 n + 4 n - 1 = 2 + 1 n + 4 n - 1 . Теперь берем формулу бинома Ньютона, применяем ее и упрощаем то, что у нас получилось:

3 n + 4 n - 1 = 2 + 1 n + 4 n - 1 = = C n 0 · 2 n + C n 1 · 2 n - 1 · 1 + ⋯ + C n n - 2 · 2 2 + 1 n - 2 + C n n · 2 + 1 n - 1 + C n n · 1 n + + 4 n - 1 = 2 n + C n 1 · 2 n - 1 + … + C n n - 2 · 2 2 + n · 2 + 1 + + 4 n - 1 = 2 n + C n 1 · 2 n - 1 + … + C n n - 2 · 2 2 + 6 n

В последнем равенстве выносим два за скобки и получаем следующее равенство:

3 n + 4 n - 1 = 2 · 2 n - 1 + C n 1 · 2 n - 2 + … + C n n - 2 · 2 + 3 n

В данном равенстве можно разделить правую часть на два при любом натуральном значении n , поскольку там есть множитель, равный 2 . Поскольку между выражениями стоит знак равенства, то выполнить деление на 2 можно и для левой части.

Ответ: данное выражение можно разделить на 2 .

Довольно часто доказать делимость можно с помощью метода математической индукции. Возьмем то же выражение, что и в примере выше, и покажем, как применить данный метод на практике.

Пример 4

Условие: выясните, будет ли выражение 3 n + 4 n - 1 делиться на 2 при любом натуральном значении n .

Решение

Используем математическую индукцию. Для начала докажем, что значение выражения 3 n + 4 n - 1 при n , равном единице, можно разделить на 2 . У нас получится 3 1 + 4 · 1 - 1 = 6 , шесть делится на два без остатка. Идем дальше. Возьмем n , равное k , и сделаем предположение, что 3 k + 4 k - 1 делится на два.

Используя данное предположение, докажем, что 3 n + 4 n - 1 можно разделить на 2 , если это возможно для 3 k + 4 k - 1 . Чтобы это доказать, нам нужно выполнить несколько преобразований.

3 · 3 k + 4 k - 1 делится на два, поскольку это возможно для 3 k + 4 k - 1 , выражение 2 · 4 k - 3 тоже можно поделить на 2 , потому что у него есть множитель 2 , значит, разность этих двух выражений тоже делится на 2 , что объясняется соответствующим свойством делимости.

Ответ : выражение 3 n + 4 n - 1 делится на 2 при любом натуральном n .

Отдельно остановимся на случае, когда в произведении рядом стоят два числа, идущие друг за другом в натуральном ряду чисел. Такое произведение тоже делится на два.

Пример 5

К примеру, выражение вида (n + 7) · (n − 1) · (n + 2) · (n + 6) делится на 2 при любом натуральном значении n , поскольку в нем есть числа, идущие в натуральном ряду друг за другом – это n + 6 и n + 7 .

Точно также при наличии двух множителей, между которыми расположено четное число членов натурального ряда, произведение может быть разделено на 2 . Так, на два делится значение (n + 1) · (n + 6) при любом натуральном n , поскольку между n + 5 и n + 6 расположено четное количество чисел: n + 2 , n + 3 , n + 4 и n + 5 .

Объединим все, о чем мы говорили в предыдущих пунктах. Если можно показать, что значение выражения делится на два при n = 2 · m , а также при n = 2 · m + 1 и произвольном целом m , то это будет доказательством делимости исходного выражения на 2 при любых целых значениях n .

Пример 6

Условие: выясните, делится ли на 2 выражение n 3 + 7 · n 2 + 16 · n + 12 при любых натуральных значениях n .

Решение

Сначала представим данное выражение в виде произведения (n + 2) 2 · (n + 3) . При необходимости повторите, как правильно раскладывать многочлен на множители. Мы имеем два множителя n + 2 и n + 3 , которые соответствуют числам, стоящим рядом в натуральном ряду. Одно из них в любом случае делится на 2 , значит, и все произведение тоже делится на 2 . То же относится и к исходному выражению.

У этой задачи есть и другое решение. Если n = 2 · m , то n + 2 2 · n + 3 = 2 m + 2 2 · 2 m + 2 2 = 4 · m + 1 2 · 2 m + 3 . Здесь есть множитель, равный четырем, благодаря чему все произведение будет делиться на 2 .

Если же n = 2 · m + 1 , то

(n + 2) 2 · n + 3 = 2 m + 1 + 2 2 · 2 m + 1 + 3 = 2 m + 3 2 · 2 m + 4 = = 2 m + 3 2 · 2 · 2

Здесь присутствует множитель 2 , значит, все произведение обладает делимостью на 2 .

Ответ: это и есть доказательство того, что выражение n 3 + 7 · n 2 + 16 · n + 12 = (n + 2) 2 · (n + 3) можно разделить на два при любом натуральном значении n .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Математика в 6 классе начинается с изучения понятия делимости и признаков делимости. Часто ограничиваются признаками делимости на такие числа:

  • На 2 : последняя цифра должна быть 0, 2, 4, 6 или 8;
  • На 3 : сумма цифр числа должна делиться на 3;
  • На 4 : число, образованное последними двумя цифрами, должно делиться на 4;
  • На 5 : последняя цифра должна быть 0 или 5;
  • На 6 : число должно обладать признаками делимости на 2 и на 3;
  • Признак делимости на 7 часто пропускается;
  • Редко таже рассказывают и о признаке делимости на 8 , хотя он аналогичен признакам делимости на 2 и на 4. Чтобы число делилось на 8, необходимо и достаточно, чтобы трёхцифреное окончание делилось на 8.
  • Признак делимости на 9 знают все: сумма цифр числа должна делиться на 9. Что, правда, не развивает иммунитет против всяческих трюков с датами, которые используют нумерологи.
  • Признак делимости на 10 , наверное, самый простой: число должно оканчиваться нулём.
  • Иногда шестиклассникам рассказывают и о признаке делимости на 11 . Нужно цифры числа, стоящие на чётных местах сложить, из результата вычесть цифры, стоящие на нечётных местах. Если результат будет делиться на 11, то и само число делится на 11.
Вернёмся теперь к признаку делимости на 7. Если о нём рассказывают, тот объединяют с признаком делимости на 13 и советуют использовать так.

Берём число. Разбиваем его на блоки по 3 цифры в каждом (самый левый блок может содержать одну или 2 цифры) и попеременно складываем/вычитаем эти блоки.

Если результат делится на 7, 13 (или 11), то и само число делится на 7, 13 (илb 11).

Основан этот способ, как и ряд математических фокусов на том, что 7х11х13 = 1001. Однако что делать с трехзначными числами, для которых вопрос делимости, бывает, тоже не решить без самого деления.

Используя универсальный признак делимости , можно построить относительно простые алгоритмы определения, делится ли число на 7 и другие "неудобные" числа.

Усовершенствованный признак делимости на 7
Чтобы проверить, делится ли число на 7, надо от числа отбросить последнюю цифру и от получившегося результата эту цифру дважды отнять. Если результат делится на 7, то и само число делится на 7.

Пример 1:
Делится ли на 7 число 238?
23-8-8 = 7. Значит, число 238 делится на 7.
Действительно, 238 = 34х7

Это действие можно проводить многократно.
Пример 2:
Делится ли на 7 число 65835?
6583-5-5 = 6573
657-3-3 = 651
65-1-1 = 63
63 делится на 7 (если бы мы этого не заметили, то могли бы сделать ещё 1 шаг: 6-3-3 = 0, а 0 уж точно делится на 7).

Значит, и число 65835 делится на 7.

На основе универсиального признака делимости, можно усовершенствовать признаки делимости на 4 и на 8.

Усовершенствованный признак делимости на 4
Если половина числа единиц в сумме с числом десятков - чётнное число, то число делится на 4.

Пример 3
Делится ли число 52 на 4?
5+2/2 = 6, число чётное, значит, число на 4 делится.

Пример 4
Делится ли число 134 на 4?
3+4/2 = 5, число нечётное, значит, 134 на 4 не делится.

Усовершенствованный признак делимости на 8
Если сложить удвоенное число сотен, число десятков и половину числа единиц, и результат будет делиться на 4, то само число делится на 8.

Пример 5
Делится ли число 512 на 8?
5*2+1+2/2 = 12, число делится на 4, значит, 512 делится на 8.

Пример 6
Делится ли число 1984 на 8?
9*2+8+4/2 = 28, число делится на 4, значит, 1984 делится на 8.

Признак делимости на 12 - это объединение признаков делимсоти на 3 и на 4. Это же работает и для любых n, являющихся произведением взаимнопростых p и q. Чтобы число делилось на n (которое равно произведению pq,актих, что НОД(p,q)=1), одно должно делиться одновремено на p и на q.

Однако будьте внимательны! Чтобы работали составные признаки делимости, множители числа должны быть именно взаимнопростыми. Нельзая сказать, что число делится на 8, если оно делится на 2 и на 4.

Усовершенствованный признак делимости на 13
Чтобы проверить, делится ли число на 13, надо от числа отбросить последнюю цифру и к получившемуся результату её четырежды прибавить. Если результат делится на 13, то и само число делится на 13.

Пример 7
Делится ли на 8 число 65835?
6583+4*5 = 6603
660+4*3 = 672
67+4*2 = 79
7+4*9 = 43

Число 43 не делится на 13, значит, и число 65835 не делится на 13.

Пример 8
Делится ли на 13 число 715?
71+4*5 = 91
9+4*1 = 13
13 делится на 13, значит, и число 715 делится на 13.

Признаки делимости на 14, 15, 18, 20, 21, 24, 26, 28 и прочие составные числа, не являющиеся степенями простых, аналогичны признакам делимости на 12. Мы проверяем делимость на взаимно-простыем множители этих чисел.

  • Для14: на 2 и на 7;
  • Для 15: на 3 и на 5;
  • Для 18: на 2 и на 9;
  • Для 21: на 3 и на 7;
  • Для 20: на 4 и на 5 (или, по-другому, последняя цифра должна быть нулём, а предпоследняя - чётной);
  • Для 24: на 3 и на 8;
  • Для 26: на 2 и на 13;
  • Для 28: на 4 и на 7.
Усовершенствованный признак делимости на 16.
Вместо того, чтобы проверять, делится ли 4-циферное окончание числа на 16, можно сложить цифру единиц с увеличенной в 10 раз цифрой десятков, с учетверённой цифрой сотен и с
увеличенной в восемь раз цифрой тысяч, и проверить, делится ли результат на 16.

Пример 9
Делится ли число 1984 на 16?
4+10*8+4*9+2*1 = 4+80+36+2 = 126
6+10*2+4*1=6+20+4=30
30 не делится на 16, значит, и 1984 не делится на 16.

Пример 10
Делится ли число 1526 на 16?
6+10*2+4*5+2*1 = 6+20+20+2 = 48
48 не делитсся на 16, значит, и 1526 делится на 16.

Усовершенствованный признак делимости на 17.
Чтобы проверить, делится ли число на 17, надо от числа отбросить последнюю цифру и от получившегося результата эту цифру пять раз отнять. Если результат делится на 13, то и само число делится на 13.

Пример 11
Делится ли число 59772 на 17?
5977-5*2 = 5967
596-5*7 = 561
56-5*1 = 51
5-5*5 = 0
0 делится на 17, значит и число 59772 делится на 17.

Пример 12
Делится ли число 4913 на 17?
491-5*3 = 476
47-5*6 = 17
17 делится на 17, значит и число 4913 делится на 17.

Усовершенствованный признак делимости на 19.
Чтобы проверить, делится ли число на 19, надо удвоенную последнюю цифру прибавить к числу, оставшемуся после отбрасывания последней цифры.

Пример 13
Делится ли число 9044 на 19?
904+4+4 = 912
91+2+2 = 95
9+5+5 = 19
19 делится на 19, значит и число 9044 делится на 19.

Усовершенствованный признак делимости на 23.
Чтобы проверить, делится ли число на 23, надо последнюю цифру, увеличенную в 7 раз, прибавить к числу, оставшемуся после отбрасывания последней цифры.

Пример 14
Делится ли число 208012 на 23?
20801+7*2 = 20815
2081+7*5 = 2116
211+7*6 = 253
Вообще-то, уже можно заметить, что 253 - это 23,

Существуют признаки, по которым иногда легко узнать, не производя деления на самом деле, делится или не делится данное число на некоторые другие числа.

Числа, которые делятся на 2, называют чётными . Число нуль тоже относится к чётным числам. Все остальные числа называют нечётными :

0, 2, 4, 6, 8, 10, 12, ... - чётные,
1, 3, 5, 7, 9, 11, 13, ... - нечётные.

Признаки делимости

Признак делимости на 2 . Число делится на 2, если его последняя цифра чётная. Например, число 4376 делится на 2, так как последняя цифра (6) - чётная.

Признак делимости на 3 . На 3 делятся только те числа, у которых сумма цифр делится на 3. Например, число 10815 делится на 3, так как сумма его цифр 1 + 0 + 8 + 1 + 5 = 15 делится на 3.

Признаки делимости на 4 . Число делится на 4, если две последние его цифры нули или образуют число, которое делится на 4. Например, число 244500 делится на 4, так как оно оканчивается двумя нулями. Числа 14708 и 7524 делятся на 4, так как две последние цифры этих чисел (08 и 24) делятся на 4.

Признаки делимости на 5 . На 5 делятся те числа, которые оканчиваются на 0 или 5. Например, число 320 делится на 5, так как последняя цифра 0.

Признак делимости на 6 . Число делится на 6, если оно делится одновременно на 2 и на 3. Например, число 912 делится на 6, так как оно делится и на 2 и на 3.

Признаки делимости на 8 . На 8 делятся те числа, у которых три последние цифры являются нулями или образуют число, которое делится на 8. Например, число 27000 делится на 8, так как оно оканчивается тремя нулями. Число 63128 делится на 8, так как три последние цифры образуют число (128), которое делится на 8.

Признак делимости на 9 . На 9 делятся только те числа, у которых сумма цифр делится на 9. Например, число 2637 делится на 9, так как сумма его цифр 2 + 6 + 3 + 7 = 18 делится на 9.

Признаки делимости на 10, 100, 1000 и т. д. На 10, 100, 1000 и так далее делятся те числа, которые оканчиваются соответственно одним нулём, двумя нулями, тремя нулями и так далее. Например, число 3800 делится на 10 и на 100.

Для упрощения деления натуральных чисел были выведены правила деления на числа первого десятка и числа 11, 25, которые объединены в раздел признаков делимости натуральных чисел . Ниже приводятся правила, по которым анализ числа без его деления на другое натуральное число даст ответ на вопрос, кратно ли натуральное число числам 2, 3, 4, 5, 6, 9, 10, 11, 25 и разрядной единице?

Натуральные числа, имеющие в первом разряде цифры (оканчивающиеся на) 2,4,6,8,0, называются четными.

Признак делимости чисел на 2

На 2 делятся все четные натуральные числа, например: 172, 94,67 838, 1670.

Признак делимости чисел на 3

На 3 делятся все натуральные числа, сумма цифр которых кратна 3. Например:
39 (3 + 9 = 12; 12: 3 = 4);

16 734 (1 + 6 + 7 + 3 + 4 = 21; 21:3 = 7).

Признак делимости чисел на 4

На 4 делятся все натуральные числа, две последние цифры которых составляют нули или число, кратное 4. Например:
124 (24: 4 = 6);
103 456 (56: 4 = 14).

Признак делимости чисел на 5

Признак делимости чисел на 6

На 6 делятся те натуральные числа, которые делятся на 2 и на 3 одновременно (все четные числа, которые делятся на 3). Например: 126 (б — четное, 1 + 2 + 6 = 9, 9: 3 = 3).

Признак делимости чисел на 9

На 9 делятся те натуральные числа, сумма цифр которых кратна 9. Например:
1179 (1 + 1 + 7 + 9 = 18, 18: 9 = 2).

Признак делимости чисел на 10

Признак делимости чисел на 11

На 11 делятся только те натуральные числа, у которых сумма цифр, занимающих четные места, равна сумме цифр, занимающих нечетные места, или разность суммы цифр нечетных мест и суммы цифр четных мест кратна 11. Например:
105787 (1 + 5 + 8 = 14 и 0 + 7 + 7 = 14);
9 163 627 (9 + 6 + б + 7 = 28 и 1 + 3 + 2 = 6);
28 — 6 = 22; 22: 11 = 2).

Признак делимости чисел на 25

На 25 делятся те натуральные числа, две последние цифры которых - нули или составляют число, кратное 25. Например:
2 300; 650 (50: 25 = 2);

1 475 (75: 25 = 3).

Признак делимости чисел на разрядную единицу

На разрядную единицу делятся те натуральные числа, у которых количество нулей больше или равно количеству нулей разрядной единицы. Например: 12 000 делится на 10, 100 и 1000.